Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases
نویسنده
چکیده
Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist-selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.
منابع مشابه
A Lumped Parameter Method to Calculate the Effect of Internal Carotid Artery Occlusion on Anterior Cerebral Artery Pressure Waveform
Background and Objective: Numerical modeling of biological structures would be very helpful tool to analyze hundreds of human body phenomena and also diseases diagnosis. One physiologic phenomenon is blood circulatory system and heart hemodynamic performance that can be simulated by utilizing lumped method. In this study, we can predict hemodynamic behavior of one artery of circulatory system (...
متن کاملEvidence-based bioactive phytoconstituents for human health and disease prevention
The term “medicinal” as applied to a plant indicates that it contains a substance or substances which modulate beneficially the physiology of sick mammals. Thousands of species of higher plants have been used by man for that purpose. Modern techniques have revealed the enormous variety and complexity of so-called secondary plant chemicals, i.e., those which do not occur in all species, but whic...
متن کاملEvidence-based bioactive phytoconstituents for human health and disease prevention
The term “medicinal” as applied to a plant indicates that it contains a substance or substances which modulate beneficially the physiology of sick mammals. Thousands of species of higher plants have been used by man for that purpose. Modern techniques have revealed the enormous variety and complexity of so-called secondary plant chemicals, i.e., those which do not occur in all species, but whic...
متن کاملStem Cells Application in Modeling of Human Genetic Diseases
The use of animal models in modeling of human genetic disease has many advantages. In some cases, however, this method may not be applicable due to some limitations, such as differences in tissue composition, anatomy and physiology of humans and animals. Isogenic human disease models are a population of cells that are selected or engineered to model a specific genetic disease, in vitro. They ar...
متن کاملO-27: Genome Instabilities in Preimplantation Development Leading to Genetic Variation between Tissues of Normal Human Fetuses
Background: Origin of midlife copy number variations (CNVs) between tissues in non-genetic diseases is unknown. Such genomic differences caused by post-zygotic events. They might either happen during the life or due to prevalent mosaicism in preimplantation stage. We aim to explore fetal mosaicism and its origins. Materials and Methods: Two apparently normal fetuses were achieved following the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 368 شماره
صفحات -
تاریخ انتشار 2013